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A multivariate hypothesis testing framework
for tissue clustering and classification
of DTI data
Raisa Z. Freidlina*, Evren Özarslanb, Yaniv Assafc, Michal E. Komloshb

and Peter J. Basserb

The primary aim of this work is to propose and investigate the effectiveness of a novel unsupervised tissue clustering
and classification algorithm for diffusion tensorMRI (DTI) data. The proposed algorithm utilizes information about the
degree of homogeneity of the distribution of diffusion tensors within voxels. We adapt frameworks proposed by Hext
and Snedecor, where the null hypothesis of diffusion tensors belonging to the same distribution is assessed by an
F-test. Tissue type is classified according to one of the four possible diffusion models, the assignment of which is
determined by a parsimonious model selection framework based on Schwarz Criterion. Both numerical phantoms and
diffusion-weighted imaging (DWI) data obtained from excised rat and pig spinal cords are used to test and validate
these tissue clustering and classification approaches. The unsupervised clusteringmethod effectively identifies distinct
regions of interest (ROIs) in phantoms and real experimental DTI data. Copyright � 2009 John Wiley & Sons, Ltd.
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INTRODUCTION

Diffusion tensor magnetic resonance imaging (1) (DT-MRI or DTI)
provides noninvasive quantitativemeasurements of the apparent
diffusion tensor of water molecules in tissue. In an anisotropic
medium, the signal attenuation in diffusion-weighted images
depends on the underlying tissue structure and is affected by
many complex factors. For instance, in brain white matter, the
diffusion-weighted imaging (DWI) signal is affected by the fiber
orientation, the organization and architecture of myelinated
axons within fascicles (2), and the distribution of fiber diameters
and densities, etc. The diffusion tensor’s eigenvalues are the
principal diffusivities that indicate the degree of symmetry of the
underlying diffusion process; their corresponding eigenvectors
determine the orientation of the principal axes.
In recent years, DTI has been widely used in medicine.

Therefore, it has become increasingly important to be able to
differentiate between tissue structures, both to address basic
biological development of tissues and organs and to improve
therapies and diagnostics. Diffusion image segmentation and
classification are one of the methods to achieve these goals. Most
of the work in DTI segmentation is based on applying
thresholding criteria to tensor-derived scalar quantities, such
as the trace of the diffusion tensor (Tr), the fractional anisotropy
(FA), and the relative anisotropy (RA). Some algorithms combine
the FA scalar index with the fiber orientation of tissue (3–6) or
T2-weighted image data (7). However, these scalars are generally
subject to bias usually due to background noise (8,9). Zhukov
et al. (10) introduced a new anisotropy measure invariant for
segmenting regions and refining with a level set method.
However, this approach is still based on a scalar measure, which
neglects the orientation of the diffusion tensor. Li et al. (11)
suggested amultiscale statistical classification and partial volume

voxel reclassification method, in which segmentation is per-
formed in multiple stages on a stack of images at different levels
of inner spatial scale.
In recent years, a number of segmentation approaches using

the full diffusion tensor (12) have been introduced by Feddern
et al. (13), Wiegell et al. (14), Wang et al. (15,16), Rousson et al. (17),
Lenglet et al. (18,19), and Jonasson et al. (20). Alexander et al. (21)
concluded that the Euclidean difference measure performs the
best for matching diffusion tensors. In Reference (13), this
measure was used along with level set methods, such as mean
curvature motion and self-snakes and extended to a classical
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geodesic active contour model for segmentation and regular-
ization of tensor-valued images. Wiegell et al. (14) applied the
modified k-means algorithm for unsupervised clustering of
thalamic nuclei with the distance metric specified by a linear
combination of the Mahalanobis and the Euclidean distance
between tensors defined by the Frobenius tensor norm. The
Euclidean distance between two tensors incorporated into an
active contour model to segment diffusion tensor data was also
used by Wang et al. (15). In Reference (17), the surface evolution
method was extended by incorporating region statistics of the
full tensor for segmenting DTI data. A new measure of
dissimilarity between tensors was later introduced by Wang
et al. (16,22) and is based on symmetrized Kullback–Leibler
divergence. This concept was further extended by Lenglet et al.
(18) for 3D probability density field segmentation with higher
internal variance. Subsequently, Lenglet et al. (19) and Awate et al.
(23) employed Riemannian tensor metrics for image segmenta-
tions by estimating tensor statistics in fiber bundles using
parametric and nonparametric techniques, respectively. Spectral
clustering, based on a graph partitioning, was successfully used
by Ziyan et al. (24) to segment thalamic nuclei. Multivariate
statistical tests for group-wise DTI statistical analysis were used by
Khurd et al. (25) and Whitcher et al. (26).
In this work we propose a novel approach, based on

multivariate statistical hypothesis F-testing (27,28), for assessing
similarities between entire tensors in different voxels in order to
perform unsupervised tissue clustering on diffusion tensor data.
The advantages of using statistical hypothesis testing are
numerous. One lies in performing tests on the entire diffusion
tensor, which contains information about Tr, FA, and diffusion
orientation. Another advantage is that one can assess errors in
region of interest (ROI) selection and choose confidence levels for
each test. A third advantage is its computational efficiency. These
tests are rapid, easy to implement, and can be performed on a
voxel-by-voxel basis.
There are several differences between our approach (29,30)

and the previously described methods. First, the algorithm we
propose does not require continuity of the segmented regions,
nor does it employ specific distance metrics in tensor space and
thus does not rely on any parameter setting/tuning prior to and/
or during clustering. However, the assumptions of normally
distributed residuals and homoscedasticity (i.e. uniformity of the
variance within ROIs) have to be satisfied in order to perform
hypothesis testing (31). Second, in comparison with the k-means
clustering approach, the proposed method has no prerequisites
for assigning the number of clusters or their initial centroids.
Classification is based on the diffusion properties of the seed
voxels, which have been determined by a hierarchical parsimo-
nious model selection framework (31), using the Schwarz
Criterion (32), also known as the Bayesian Information Criterion.
This paper is organized as follows: The Theory section provides

a background on diffusion tensor imaging and introduces the
framework for multivariate hypothesis testing. In the Clustering
Based on the Parametric Distribution of Diffusion Tensors section,
we describe the clustering approach, which is based on a
parameter distribution of diffusion tensors and a step-by-step
selection of a seed region. The Methods section contains
information about simulated and experimental data used for
validation and in the Results section, we present results obtained
with our clustering method. Finally, in the Discussion and
Conclusion sections we discuss the pros and cons of the
proposed method.

THEORY

Diffusion tensor imaging

Diffusion tensor imaging describes water diffusion in tissues by
analyzing the relationship between the signal loss (12,33), caused
by the random motion of water molecules along diffusio-
n-encoding gradients applied in various directions, and the
apparent diffusion tensor, D:

SðGÞ ¼ Sð0Þe�trðbDÞ (1)

where S(G) is the observed signal attenuated by the diffusion-
weighting gradient G¼ (Gx, Gy, Gz), S(0) is the signal in the
absence of the diffusion-weighting gradient, and b is the
b-matrix computed by

bij ¼ g2GiGjd
2 D� d

3

� �
(2)

where Gi is the component of the diffusion gradient along one of
the coordinate axes (i¼ x, y, or z) with duration d, and D is the
diffusion time. In eqn (1) D is a symmetric (3� 3) second-order
diffusion tensor (12). We reformat D as a column vector that
contains the elements of the estimated diffusion tensor as
follows:

D ¼ Dxx ;Dyy ;Dzz;Dxy ;Dxz;Dyz

� �T
(3)

where diagonal elements, Dxx, Dyy, and Dzz are the apparent
diffusivities along xx, yy, and zz directions, while the remaining
(off-diagonal) elements represent correlations in displacements
along orthogonal directions. These six independent elements are
sufficient to describe Gaussian molecular diffusion in three
dimensions.

Parameter estimation framework for multivariate
hypothesis testing

To estimate the diffusion tensor from the function in eqn (1), we
applied a nonlinear least-square minimization method, proposed
by Koay et al. (34), for which the initial guesses were obtained
using linear least-squares minimization:1

SðGÞ ¼ e�BC (4)

where n is a number of DWI acquisitions, S is the (n� 1) vector of
the observed signal values, B is the (n� 7) design matrix, which
consists of a list of (1� 6) b-matrix elements and (�1) for a series
of n DWI acquisitions:

B ¼

b2x1 b2y1 b2z1 2bx1y1 2bx1z1 2by1z1 �1

b2x2 b2y2 b2z2 2bx2y2 2bx2z2 2by2z2 �1

..

. ..
. ..

. ..
. ..

. ..
. ..

.

..

. ..
. ..

. ..
. ..

. ..
. ..

.

b2xn b2yn b2zn 2bxnyn 2bxnzn 2bynzn �1

2
6666664

3
7777775

(5)

and C is a (7� 1) column vector that contains the estimated
diffusion tensor and log[S(0)]:

C ¼ Dxx ;Dyy ;Dzz;Dxy ;Dxz;Dyz; log½Sð0Þ�
� �T

(6)

1Given two vectors P and V, the element-wise exponentiation is defined as

P�eV, where Pi ¼ eVi .
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The residual sum of squares (RSS) is estimated according to

RSS ¼
Xn
i¼1

SiðGÞ � e�BiC
� �2

(7)

where Bi is the ith row of B, Si(G), e
�BiC are the observed and

estimated signals respectively, and n is the number of
diffusion-weighted acquisitions.

CLUSTERING BASED ON THE PARAMETRIC
DISTRIBUTION OF DIFFUSION TENSORS

In this work we propose a novel tissue clustering algorithm based
on the multivariate F-test for grouping voxels with the same
distribution of diffusion tensor parameters. In order to justify the
use of this hypothesis testing framework, the assumptions of
normally distributed residuals and homoscedasticity (i.e. uniform-
ity of the variance within an ROI) have to be satisfied. It has
previously been shown that the residuals are asymptotically
normally distributed (35) at SNR greater than 7 in an experiment
otherwise free of systematic artifacts. However, in the same work,
Carew et al. (35) also reported that the variance in the voxels with
different fractional anisotropies, FAs2, may not be homogeneous
(in particular, voxels with low FA have higher estimated variance
in FA than voxels with high FA), thus violating the assumption of
variance uniformity. To overcome this problem in the proposed
clustering approach, the seed region is selected from one of the
three anisotropic models, i.e. general anisotropic (l1> l2> l3),
oblate (l1¼ l2> l3), or prolate (l1> l2¼ l3), thus the voxels
included in the seed region are presumed to have an FA greater
than 0.5. These models are identified by a previously proposed
parsimonious model selection framework (31), using the Schwarz
Criterion (32). This framework selects the diffusion model
(general anisotropic, prolate, oblate, or isotropic) that best fits
the DWI data using the fewest number of parameters, by
imposing penalties for models with a larger number of free
parameters. It is defined as

SCk ¼ log
RSSk
n

� �
þ dk

logðnÞ
n

(8)

where k represents the model type (general anisotropic, prolate,
or oblate), n is the number of experimental data points, and d is
the number of free parameters for the kth model (d is set to 7 and
5 for the general anisotropic and prolate/oblate models,
respectively). Once the optimal model is chosen in each voxel,
m neighboring seed voxels are picked within the same model
type (as described below), i.e. having similar FA values, to satisfy
the assumption that the variance of each measurement in the
seed region is uniform (homoscedasticity), and that the
distributions of diffusion tensor parameters are similar. Testing
voxels of interest against such homogeneous seed regions makes
the unsupervised clustering algorithm more reliable.

Choosing a seed region

The first step in selecting a seed region is to perform a
voxel-by-voxel search until m neighboring voxels (e.g. 6–9 voxels
in a [3� 3] sector) of the same model type (general anisotropic,

oblate, or prolate) are located. The null hypothesis, which
assumes that the distributions of diffusion tensor parameters in
these m voxels are the same, is tested by taking the following
steps, adapted from Hext (28) (see Fig. 1):

(1) Combine m sets of [n� 1] acquired signals, Si(G), into

[n �m� 1] array, SCAS, where n is the number of experimental

data points in each voxel and i¼ 1, 2,. . ., m.
(2) Combine m sets of individually estimated signals, e�BCi , into

[n �m� 1] array, SCES, where n is the number of experimental

data points in each voxel and 1, 2,. . .,m.
(3) Estimate the RSS for the combined individually estimated

signals, RSSCES, by

RSSCES ¼
Xn�m
i¼1

SCASi � SCESið Þ2

(4) Estimate ĈAvg for all m voxels using the combined acquired

signals, SCAS, and the augmented [n �m� 7] designmatrix, BC,

Figure 1. Schematic diagram of the algorithm flow. This figure is avail-

able in color online at www.interscience.wiley.com/journal/nbm
2FA ¼

ffiffi
3
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1�hlið Þ2þ l2�hlið Þ2þ l3�hlið Þ2

l2
1
þl2

2
þl2

3

r
; where hli ¼ l1 þ l2 þ l3ð Þ=3
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as described in the Parameter Estimation Framework for

Multivariate Hypothesis Testing subsection.
(5) Estimate the average [n �m� 1] signal vector, SAvg, using

SAvgðGÞ ¼ e�BCĈAvg .
(6) Estimate the RSS for the average signal, RSSAvg, by

RSSAvg ¼
Xn�m
i¼1

SCASi � SAvgi
� �2

(7) Apply the F-test, adapted from Snedecor3, on the null hy-

pothesis to assess the similarity among variances within the

voxels:

F0 ¼ ðRSSAvg � RSSCESÞ=ðfp � ðm� 1ÞÞ
ðRSSCESÞ=ðm � ðn� fpÞÞ (9)

where fp¼ 7 is the number of free parameters in the general
anisotropic model, m is a number of voxels with n experimental
data points each.
The null hypothesis that the diffusion tensors in all m voxels

belong to the same parametric distribution is accepted if

F0 < Fð1� a; n1; n2Þ (10)

where Fð1� a; n1; n2Þ is the critical value from the F distribution
with n1 ¼ fp � ðm� 1Þ and n2 ¼ m � ðn� fpÞ degrees of freedom
and a significance level of a. If eqn (10) is satisfied, these voxels
will be used as a seed region for subsequent clustering.
Otherwise, the algorithm moves to the next voxel and repeats
Steps 1 through 7 above.

Clustering

Clustering is performed by testing each voxel in the image
against the seed region. The new null hypothesis assumes that
the distributions of diffusion tensor parameters in the tested
voxel and in the m seed voxels are the same. To test null
hypothesis, Steps 1 through 7, as in the previous section, are
repeated. However, the combined set now consists of mþ 1
voxels, where m are voxels in the seed regions. If the F0 value in
eqn (9) for mþ 1 voxels is small, the null hypothesis, that
the diffusion tensor parameters in the tested voxel are the same
as in the seed region, is accepted and the voxel is added to the
cluster.
Once all voxels are tested against given seed regions, the next

seed region is selected according to the steps in the previous
section (previously clustered voxels are excluded from all future
tests). The clustering process stops when no new seed regions
can be identified.

METHODS

Simulations

To evaluate the unsupervised clustering approach, synthetic
phantoms were generated in MATLAB (The MathWorks, Inc.) by
setting the signal-to-noise ratio, SNR, in S(0) images to 20, 25, and
33 (the latter matches the SNR in the excised pig spinal cord DTI
data), for a fixed signal intensity, I0¼ 1000. White matter was
simulated with the general anisotropy and prolate models, while

gray matter was simulated with the isotropic model with values
typical for living brain tissue (36). The oblate model was set to
parameters between white and gray matter. The confidence
interval for an F-test was set to 95%.

Synthetic phantoms with different degrees of oblateness and
prolateness

For each SNR, two phantoms with ‘Lower’ FAs and ‘Higher’ FAs for
the oblate and prolate regions were simulated (Table 1).
Normally distributed random noise was added to the signal

intensity in each voxel to make the diffusion-weighted images
Rician distributed according to the following equation:

DWI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DWI2Re þ DWI2Im

q
(11)

where

DWIRe ¼ I0e
�trðbDÞ þ NRe; DWIIm ¼ NIm

and NRe and NIm are normally distributed random numbers with
mean zero and standard deviation s¼ I0/SNR. This model
assumes that noise is added to the real and imaginary channels
independently, and that the MR signal is rectified (9,37).

Synthetic phantoms with different spatial orientations

To evaluate the ability of the proposed clustering method to
discriminate between tensors with different spatial orientations,
we simulated a number of phantoms with fixed FA and Tr values
and SNRs set to 20, 25, and 33, where noise was added as before.
However, in these simulations, the diffusion tensors in the oblate

Table 1. FA and Tr (�10�6mm2/s) values for the oblate and
prolate regions in synthetic phantoms with different degrees
of oblateness and prolateness

Region # Diffusion model FA Tr

’Lower’ FAs
1 Oblate 0.53 3100
2 0.48 3300
3 0.58 3800
4 0.62 3300
5 Prolate 0.7 2100
6 0.62 2300
7 0.78 2300
8 0.83 1900
— General anisotropic 0.55 2500
— Isotropic 0.05 2200

’Higher’ FAs
1 Oblate 0.59 3300
2 0.54 3500
3 0.64 3900
4 0.68 3500
5 Prolate 0.8 2100
6 0.72 2300
7 0.88 2300
8 0.92 1900
— General anisotropic 0.62 2600
— Isotropic 0.06 2200

3A typographical error appears in Statistical Methods by Snedecor and Cochran

(27) in the formula given on page 344 describing the F-test comparing two

nested models. The corrected formula is given in eqn (9).
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and prolate regions were rotated from the z-axis as described in
Table 2.

Synthetic phantoms with partial volumes

The synthetic phantoms with partial volume regions between the
prolate quadrants (corresponding parameters are shown in
Table 3) were generated in order to evaluate the capability of the
clustering algorithm to identify voxels affected by partial
voluming. Partial volume regions were simulated according to

SðGÞ ¼ f � Sð0Þe�trðbDiÞ þ ð1� f Þ � Sð0Þe�trðbDjÞ; for i 6¼ j (12)

where Di and Dj are the diffusion tensors (prolate model) with
different degrees of prolateness and f is the volume fraction
coefficient ( f� 1), which continuously changes from one cluster
to its neighbor.

For all simulated phantoms, the b-matrix was calculated with
the imaging parameters described in the Excised Pig Spinal Cord
DTI Experiments subsection.
The unsupervised clustering algorithm was applied to the set

of 46 reconstructed diffusion-weighted images with four
nondiffusion-weighted images (b� 0 s/mm2). The confidence
interval for an F-test was set to 99%.

Excised spinal cord DTI experiments

In addition to the numerical simulations, we tested our method
on experimental MRI data obtained from excised rat and pig
spinal cords fixed with a 4% paraformaldehyde solution. Prior to
MR data collection, the spinal cord was washed in phosphate-
buffered saline (PBS) to avoid signal loss due to fixative-related
T2-shortening (38). The p-value of 0.05 was used for all tests.

Excised rat spinal cord DTI experiments

DWIs were obtained using a diffusion-weighted stimulated echo
pulse sequence with d (pulse duration)¼ 2.5ms, D (diffusion
time)¼ 70ms, TR¼ 3500ms, and TE¼ 14.7ms on a horizontal-
bore 7T scanner equipped with a Micro2.5 microscopy probe with
a maximal gradient strength of 1460mT/m (Bruker, Germany).
Other imaging parameters were: in-plane resolution
200� 200mm2, slice thickness¼ 2mm, number of averages
(NEX)¼ 3, bandwidth¼ 50 kHz. For seven slices, 40 DWIs per slice
were acquired during 28 h of scanning. Thirty-one of these were
attenuated by diffusion gradients G¼ (Gx, Gy, Gz) and nine were
not attenuated ( Gj j ¼ 0). In each direction the approximate
b-value was 2000 s/mm2. The SNR for this experiment was 31.

Excised pig spinal cord DTI experiments

The sample was imaged in a 15mm NMR tube containing
MR-compatible perfluoropolyether oil (‘Fomblin’), using a
Micro2.5 microscopy probe (15mm solenoid coil) with
1450mT/m 3-axis gradients (7T vertical-bore MRI scanners,
Bruker, Germany). A diffusion-weighted spin echo pulse
sequence was used with TR¼ 3500ms, TE¼ 33ms, band-
width¼ 50 kHz, in-plane resolution 94� 94mm2 with seven
continuous 1mm thick slices. Four DWIs per slice were acquired
without applying the diffusion sensitizing gradients (b� 0 s/
mm2), followed by the acquisition of 46 diffusion-weighted
images with diffusion gradient strength (G)¼ 120mT/m yielding
approximate b-values of 1000 s/mm2. The number of averages
(NEX) was 2. Each of these diffusion-weighted scans was collected
with diffusion gradients applied along a different direction
determined from the second-order tessellations of an icosahe-
dron on the surface of a unit hemisphere. The diffusion gradient
duration (d) was 5ms, and the gradient separation (D) was 20ms.
The total imaging time was less than 13 h (SNR¼ 33).
At each voxel location in the raw rat and pig spinal cord images,

the apparent diffusion tensor, D, was calculated (12). Tensor-
derived parameters, such as the Tr, FA, the eigenvectors, e1, e2,
and e3, and the eigenvalues, l1, l2, and l3, were all calculated and
passed to the parsimonious model selection algorithm and,
subsequently, to the clustering method, based on the multi-
variate hypothesis testing.

Table 2. FA and Tr (�10�6mm2/s) values for the synthetic
phantoms with different spatial orientations

Region #
Diffusion
model FA Tr u (8)

’Lower’ FAs
1 Oblate 0.53 3100 0
2 9
3 18
4 27
5 Prolate 0.7 2100 0
6 9
7 18
8 27
— General

anisotropic
0.5 2500 0

— Isotropic 0.05 2200 0
’Higher’ FAs

1 Oblate 0.59 3300 0
2 9
3 18
4 27
5 Prolate 0.8 2100 0
6 9
7 18
8 27
— General

anisotropic
0.62 2600 0

— Isotropic 0.06 2200 0

Table 3. FA and Tr (�10�6mm2/s) values for the synthetic
phantoms of prolate models with partial volumes

5 6 7 8

FA 0.8 0.85 0.87 0.9
Tr 2100 2000 2400 2000
u (8) 0 60 20 40

NMR Biomed. (2009) Copyright � 2009 John Wiley & Sons, Ltd. www.interscience.wiley.com/journal/nbm
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Figure 2. Q–Q plot of residuals in (a) phantom and (b) pig spinal cord versus standard normal.

Figure 3. Synthetic phantom generated with different degrees of oblateness in regions #1–4 and prolateness in regions #5–8 (‘Lower’ FAs in Table 1) at

SNR¼ 33: (a) the fractional anisotropy and (b) trace (mm2/s) maps; (c) color-coded parsimonious model map (blue–isotropic, orange–oblate, red–prolate,
and turquoise–general anisotropic models); (d) identified oblate and prolate clusters (colors depict different clusters and are not related to colors in the

parsimonious model map). This figure is available in color online at www.interscience.wiley.com/journal/nbm
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RESULTS

The residuals from the phantom and the excised rat and pig spinal
cord experiments (SNR¼ 33) are asymptotically normally distrib-
uted (Fig. 2) and the variance of each measurement is presumed to
be unchanging (homoscedasticity), thus testing one model against
another, in the manner presented below, is well grounded.

Simulations

Synthetic phantoms with different degrees of oblateness and
prolateness

Figure 3a and b shows the FA and Tr maps for the simulated
phantoms at SNR¼ 33, which corresponds to the SNR in the
acquired images of an excised pig spinal cord. Although, from
these figures it might seem obvious visually that there are four
distinct domains in both oblate and prolate regions, such visual
delineation is possible only by placing all voxels with equal FAs
and Trs in homogeneous ROIs. Otherwise, variations in FA from
0.5 to 0.6 in the oblate regions and 0.7 to 0.8 in the prolate
regions, with Tr differences only around 300� 10�6mm2/s,
would not be visible. The parsimonious model selection results

(Fig. 3c) had 97% success of identifying correct models. However,
from these results it is not obvious that both oblate and prolate
regions consist of distinct quadrants. In contrast, the proposed
clustering algorithm correctly identified regions with different
degrees of oblateness and prolateness (Table 1), which are shown
in Fig. 3d. The general anisotropic area was clustered with 100%
success (results are not shown in this paper). The isotropic voxels
with FA¼ 0.2 (depicted in blue in Fig. 3c) remained unclustered
with 100% success.
Performance evaluation of the clustering algorithm at different

SNRs and FAs for the oblate and prolate regions is shown in Fig. 4.
Overall, the proposed method performed better for the FA values
greater than 0.55 at all SNRs. The same behavior was observed in
the prolate regions. However, the performance of clustering
significantly decreased at FA< 0.5 and SNR< 25 in the oblate
area, i.e. regions #1 and #2weremerged together. All voxels in the
general anisotropic region at all SNRs were clustered correctly.

Synthetic phantoms with different spatial orientations

As can be seen from Fig. 5a, b, and c, oblate and prolate regions
appear homogeneous in the FA, Tr, and parsimonious model

Figure 4. Performance comparison for the oblate and prolate regions at (a) SNR¼ 33; (b) SNR¼ 25; and (c) SNR¼ 20, where ‘Lower’ FAs are represented
by the darker bar and ‘Higher’ FAs by the lighter bar. The true positive counts are calculated within the areas of corresponding clusters, while the false

positive counts are obtained from the outside regions.

NMR Biomed. (2009) Copyright � 2009 John Wiley & Sons, Ltd. www.interscience.wiley.com/journal/nbm
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selection maps, respectively, despite these regions being
generated with diffusion tensors having different spatial
orientations (at least 98 of angle separation). Figure 5d shows
clustering results at SNR¼ 33, in which all regions were correctly
segmented (except region #8, where 20% of voxels remained
unclustered). Performance results of the clustering oblate and
prolate regions for all tested SNR are presented in Fig. 6. The
algorithm performance at the ‘Higher’ FAs was consistently good
at all SNRs. On the other hand, at the ‘Lower’ FAs, oblate regions
#1 and #2 were clustered together at SNR¼ 25 (Fig. 6b), while at
SNR¼ 20, regions #3 and #4 were clustered together (Fig. 6c), as
well. Figure 6a and b shows 100% success of separating all prolate
clusters at ‘Higher’ FAs and where the SNRs are equal to 33 and
25. However, at the ‘Lower’ FAs and SNR¼ 20, prolate regions #5
and #6 were merged together and only 20% of true positive were
achieved in region #8. Overall, the performance of the proposed
clustering method in the prolate regions was better than in the
oblate at SNR< 33.

Synthetic phantoms with partial volumes

Figure 7a, b, and c shows the FA, Tr, and the parsimonious model
selection maps of the synthetic phantom with partial volumes

between prolate regions. All these maps appear to be
homogeneous. However, the proposed clustering algorithm
correctly segmented prolate quadrants, as well as most of the
partial volume regions generated according to eqn (12).
Furthermore, by analyzing prolate clusters, it was determined
that a number of prolate voxels, which were misclassified as
general anisotropic or oblate by the parsimonious model
selection algorithm (Figs 7c and 8a), were correctly reclassified
as prolate with 98% success at SNR¼ 30 (Fig. 8b and 8c).
Although, some voxels with partial volumes remained unclus-
tered, it became apparent from Fig. 8c that such voxels can be
identified by subtracting all prolate clusters from the parsimo-
nious model map (prolate voxels only).

Excised spinal cord DTI experiments

Excised rat spinal cord DTI experiment

Figure 9a and b shows the orientationally invariant FA and
Tr maps for three consecutive slices. By examining these maps,
we can only distinguish white from gray matter groups, although
the white matter itself consists of several different fiber
compartments.

Figure 5. Synthetic phantom generated with different principal diffusion orientations, i.e. tensors in the oblate regions #1, #2, #3, and #4 are rotated by

0, 9, 18, and 278, respectively, and in the prolate regions #5, #6, #7, and #8 the diffusion tensors are rotated by 0, 9, 18, and 278, respectively, from the z-axis,

general anisotropic tensor was not rotated: (a) the fractional anisotropy and (b) trace (mm2/s) maps; (c) color-coded parsimonious model map
(blue–isotropic, orange–oblate, red–prolate, and turquoise–general anisotropic models); (d) identified oblate and prolate clusters at SNR¼ 33 (colors

depict different clusters and are not related to colors in the parsimonious model map). This figure is available in color online at www.interscience.

wiley.com/journal/nbm
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Parsimonious model selection consistently segmented the
prolate regions in white matter (Fig. 10a). However, the
parsimonious model map does not reveal different fiber patterns
within white matter. The multivariate hypothesis testing base-
d-clustering algorithm identified a number of distinct prolate
regions (Fig. 10b).
Furthermore, by analogy with the results in the Synthetic

Phantoms with Partial Volumes subsection, we generated a
difference map between the parsimonious model map of prolate
voxels only and the sum of all prolate clusters. These results are
shown in Fig. 11c, where voxels depicted in green correspond to
reclassified as prolate, and voxels depicted in orange correspond
to the edges of white matter, thus, most likely, containing partial
volumes.

Excised pig spinal cord DTI experiment

Figure 12a and b shows the orientationally invariant FA and Tr
maps. As in the excised rat spinal cord experiment (above), the
prolate model (in Fig. 12c) depicted in red) was consistently
selected as a white matter region. Figure 12d shows the results of

the unsupervised clustering algorithm (colors represent different
clusters within white matter), which reveals similarities with the
known histology of the spinal cord (Fig. 13) (39).

DISCUSSION

The aim of this work is to investigate the feasibility of using a
multivariate hypothesis testing framework for automated tissue
clustering and classification.
As long as the conditions for normally distributed residuals and

uniform variances within each voxel of a diffusion-weighted
image are met, this algorithm can be robustly used for clustering
and classifying high resolution data obtained from tissue. To
prevent clustering voxels in areas with inhomogeneous variance,
which is observed in voxels with different degrees of diffusion
anisotropy (35), we perform parsimonious model selection
procedures prior to the clustering algorithm. Such model
pre-selection ensures that the seed voxels for launching clusters
are already described by the same diffusion models, thus
improving the accuracy of the results.

Figure 6. Performance comparison for the oblate and prolate regions at (a) SNR¼ 33; (b) SNR¼ 25; and (c) SNR¼ 20, where ‘Lower’ FAs are represented

by the darker bar and ‘Higher’ FAs by the lighter bar. The true positive counts are calculated within the areas of corresponding clusters, while the false

positive counts are obtained from the outside regions.
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Monte Carlo simulations (not presented in this work) have
shown that the clustering algorithm is more sensitive to trace
differences, DTr, between regions having lower FAs (less than 0.7)
than higher FAs. It was determined that for SNR¼ 33 and FA< 0.7,

the clusters were correctly separated for DTr> 300� 10�6mm2/s
and the difference between FAs, DFA> 0.5. Otherwise, it was
sufficient to set DTr¼ 200� 10�6mm2/s and DFA> 0.5. For the
lower SNRs, clustering results showed an average of 95% success

Figure 7. The phantom with partial volumes at SNR¼ 30: (a) FA; (b) Tr (mm2/s); and (c) parsimonious model selection maps; (d) the identified clusters

(colors depict different clusters and are not related to colors in the parsimonious model map). This figure is available in color online at

www.interscience.wiley.com/journal/nbm

Figure 8. The phantomwith partial volumes at SNR¼ 30: (a) voxels identified by the parsimonious model selection algorithm as prolate; (b) the union of

all prolate clusters obtained from the clustering algorithm; (c) the difference between (a) and (b) maps, where correctly reclassified and unclustered voxels
with partial volumes are shown in green and orange colors, respectively. This figure is available in color online at www.interscience.wiley.com/journal/

nbm
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Figure 9. (a) Fractional anisotropy and (b) trace (mm2/s) maps for three consecutive slices of the excised rat spinal cord.

Figure 10. (a) Parsimonious model selection and (b) clustering maps for three consecutive slices of excised rat spinal cord.
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at DTr> 400� 10�6mm2/s for FAs> 0.65 and DFA¼ 0.1. We also
noticed that at FAs greater than 0.9, some voxels were left
unclustered. This could be attributed to forcing negative
eigenvalues (l3), observed at the high FAs, to be positive. Voxels
in the oblate and prolate regions, which were misclassified as
general anisotropic by the parsimonious model selection
algorithm, were correctly reclassified as oblate/prolate with at
least 98% success at SNRs greater than 20.

It was also observed (results are not presented in this work)
that at the significance levels below 5% there was an increase in
accepting false null hypotheses due to voxels with partial
volumes. In such cases, overall performance of the proposed
clustering algorithm at SNR� 20 and FAs greater than 0.6 was
decreased on average by 5%. However, results were consistent for
a range of significance levels in the regions without voxels
containing partial volumes (SNR� 20 and FA� 0.6). Furthermore,

Figure 11. Excised rat spinal cord: (a) voxels identified by the parsimonious model selection algorithm as prolate; (b) the union of all prolate clusters

obtained with the clustering algorithm; (c) the difference between (a) and (b) maps.

Figure 12. Excised pig spinal cord: (a) the fractional anisotropy and (b) trace (mm2/s) maps; (c) color-coded parsimonious model map (blue–isotropic,
orange–oblate, red–prolate, and turquoise–general anisotropic models); (d) identified clusters for the prolate model regions (colors depict different

clusters).
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at the SNRs< 20 and FAs< 0.6 performance of the proposed
method on average was reduced by 50% for fewer than 21 DWIs
and 20% for more than 21 directions.
From Monte Carlo simulations, we have determined that the

accuracy and the sensitivity of the multivariate hypothesis testing
to the degrees of prolateness/oblateness, as well as, spatial
orientation are closely related to the performance of the diffusion
tensor estimation. Thus, for a nonlinear least-square minimization
method, proposed by Koay et al., at SNRs< 20 it is advisable to
acquire a minimum number of 25 DWIs. For example, at
SNRs< 20, in order to differentiate between the regions with
DTr¼ 200� 10�6mm2/s and DFA¼ 0.05, the number of DWIs
had to be set to 33. However, the proposed clustering method
performed with 98% accuracy when the regions had
DTr¼ 400� 10�6mm2/s and DFA¼ 0.1 for FA� 0.6 with only
12 diffusion encoding directions.
In general, the multivariate hypothesis testing framework for

tissue clustering is fast and simple to implement. Due to its
unsupervised nature, the results from such tests are fully
reproducible for high-resolution data, i.e. low number of voxels
with partial volumes, and provide quantitative information about
underlying tissue structures. In addition, we have shown that the
clusters with similar FAs and/or Trs might have different
underlying structures. This implies that clustering methods
based upon thresholding criteria may incorrectly classify and
cluster tissues having different properties. By looking at the entire
tensor, we are able to discriminate between different tissue types
more accurately. However, it is important to note that the voxels
with partial volume (e.g. voxels that contain two fibers with
different degrees of prolateness and/or diffusion orientations)
may be assigned to different clusters depending on the starting
seed region. This inconsistency can be resolved by identifying the
most probable seed regions prior to clustering or by explicitly
including partial-volume models in the parsimonious model
selection hierarchy. Furthermore, when determining the number
of voxels in the seed region, it is important to consider the
resolution of DTI data and the size of the underlying structure of
interest. However, the seed region should contain at least three
adjacent voxels. In addition, it was observed that at low SNRs or
for 21 or fewer DWI acquisitions, which contribute to higher
variability in the estimated diffusion parameters, the proposed
clustering method performed on average 10% better for the

2� 2 seed region than the larger regions. This is because as the
number of voxels in the seed region grows, so does the net
variability within the sample. This causes the F-test to be more
forgiving.
The voxel-by-voxel approach allows us to cluster regions which

are not connected to each other without invoking a pre-defined
number of clusters. However, segmented regions tend to be
noisier than the results of segmentation based on such
techniques as level sets and dissimilarity measures.
Since, in its current implementation the proposed multivariate

hypothesis testing algorithm is very sensitive to changes in
diffusion directionality, it is suitable for clustering tissues with
well-defined orientations. Work is underway to extend this
approach to identifying clusters, rather than individual tensors,
with similar degrees of oblateness/prolateness, yet different
spatial orientations.

CONCLUSIONS

The ability to identify different tissue types within white or gray
matter has the potential to improve the diagnosis of a variety of
neurological disorders, and to assess changes occurring in normal
and abnormal development. However, before using the multi-
variate hypothesis testing framework, it is important to ensure
normality and equality of the variances for the diffusion tensor
estimator and functions derived from it. We satisfy these
conditions by applying the nonlinear least-squares estimator
and the parsimonious model selection procedures prior to
clustering. In addition, the parsimonious model selection
framework improves automatic ROI delineation and classification
of different tissue types by providing additional information
about the underlying diffusion model.
Given the simplicity and speed of the proposed F-test

clustering framework, it is feasible to process large high-
resolution microscopic DTI datasets. Encouraging results from
phantom simulations increase our confidence in clustering
ex vivo tissue specimens where background noise is the primary
artifact. However, in clinical applications other systematic artifacts
should be reduced or carefully considered prior to applying
multivariate hypothesis testing for clustering.
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